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Let [Tn (t)]�
n=1 be a sequence of strongly continuous linear semigroups on

Banach spaces Xn converging in the sense of Kato to a semigroup T(t) on the
Banach space X. We discuss under what conditions the chaoticity of Tn (t) is
inherited by T(t). We apply our results to a discrete parabolic equation. � 2000
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1. INTRODUCTION

During the past 20 years or so, several definitions of chaos have been
proposed (see [Dev, K-S, L-Y, Wig]). One of the most used among these
definitions can be formulated as follows [Dev]:

Definition 1.1. Let X be a metric space. A continuous map f: X [ X
is said to be chaotic on X, if
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(1) f is topologically transitive;

(2) the periodic points of f are dense in X;

(3) f has sensitive dependence on initial conditions.

Condition (1) means that for all nonempty open subsets U and V of X
there exists a natural number n such that f n (U) & V{<, while a point x
is called periodic if there exists some n # N, n>1 such that f n (x)=x. For
the notion of sensitive dependence on initial conditions we refer to [Dev,
Definition 8.2, p. 49]. In the following we shall dispense with condition (3).
Indeed, it has been proven in [Ba-al] that if f is transitive and has dense
periodic points then f has sensitive dependence on initial conditions. One
of the most appealing properties of Definition 1.1 is that it extends rather
naturally to linear system ([McC, P-A, D-S-W]). More precisely, let X be
an infinite-dimensional separable Banach space and T a linear bounded
operator on X. The operator T is called hypercyclic if there exists x* # X
such that its orbit under the operator T, [T nx* | n # N], is dense in X. The
operator T is hypercyclic if and only if it is topologically transitive (see, for
instance, [D-S-W, Theorem 2.2]). Thus, a hypercyclic operator T is
chaotic if and only if the set of Xper of the periodic points of T, i.e.,

Xper :=[x # X | T nx=x, for some n # N],

is dense in X. Let us now restate Definition 1.1 in the context of linear
semigroups defined on a Banach space.

Definition 1.2. A C0 -semigroup [T(t)]t�0 on the Banach space X is
called chaotic provided that T(t) satisfies the following two conditions:

(H) (Hypercyclicity) There exists x* # X such that [T(t) x* | t�0] is
dense in X.

(P) The set Xper of the periodic points of [T(t)]t�0 given by Xper :=
[x # X | _t>0 : T(t) x=x] is dense in X.

Our objective in this paper is to investigate the chaoticity of the
approximating semigroups. In order to analyze this question, we define the
approximation in the sense of Kato, which is one of the most general
frameworks in approximation theory for linear semigroups (see [Kat,
Chap. IX, Sect. 4]). Let (Xn , & }&n) be a sequence of Banach spaces such
that on each Xn there is defined a C0 -semigroup Tn (t). Assume that Tn (t)
converges in the sense of Kato to a C0 -semigroup T(t), i.e.,

lim
n � �

sup
t # [0, T]

&Tn (t) Pn f &PnT(t) f &n=0 for any f # X, (1.1)
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for some approximating operator Pn (the precise definition is given in
Section 3).

To approximate a chaotic semigroup T(t) by a sequence of C0 -semi-
groups [Tn (t)], one should first settle the following questions:

(Q1) If [Tn (t)] is a sequence of linear chaotic C0 -semigroups which
converges to T(t) in the sense of Kato, can we assert that T(t) is chaotic?

(Q2) Assuming that T(t) is chaotic and [Tn (t)] converges to T(t) in
the sense of Kato, under which conditions can we assert that at least one
of Tn (t) is chaotic?

The relevance of these questions can be seen in the two examples of the
next section. The first example is constructed to show that in general the
statement

(S1) Tn (t) is chaotic \n # N O T(t) is chaotic

is not true, which gives a negative answer to question (Q1). The converse
statement;

(S2) T(t) is chaotic O Tn (t) is chaotic \n # N,

is not true either. But we can show that (S2) is true for those n's such that
instead of (1.1) we have

PnT(t) f=Tn (t) Pn f \f # X. (1.2)

We apply the above result to the chaotic semigroup generated by a
parabolic equation which will be introduced in Example 2.4 of the follow-
ing section. We do not expect that etAh w�K etA (as is mentioned in [Kat],
even for the heat semigroup we cannot expect such convergence). In
Section 4 we construct explicitly the approximating spaces and we prove
that for some specific mesh sizes the discretized problem becomes chaotic.
We mention that this feature has already been observed and studied in the
context of nonlinear chaos (see [T-W-P]).

2. TWO EXAMPLES

In this section we give two examples of linear chaotic semigroups.

Example 2.1 [P-A]. Le X :=l1 and A :=&:I+;B, where B is the
backward shift in l1; i.e., if f=( f1 , f2 , ...) # l1, then (B f)n= fn+1 . Then the
linear evolution problem in X,
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{
d f
dt

=&:If+;Bf :=A f,

f(0)=f0 # l1,

generates a chaotic semigroup T(t)=etA, provided that ;>:�0.

For the reader's convenience we briefly sketch the proof by using a
lemma which gives a sufficient condition that a C0-semigroup be hyper-
cyclic. For the original proof see [P-A].

Lemma 2.2 (see [D-S-W, Theorem 2.3]). Let [T(t)]t�0 be a C0 -semi-
group on the Banach space X. Define

X0 :=[x # X | lim
t � �

T(t) x=0]

and X� :=[x # X | for any =>0, there exist u # X and t>0 such that &u&<=
and &T(t) u&x&<=]. If X0 and X� are both dense in X, then [T(t)]t�0 is
hypercyclic.

Thus, in order for [T(t)]t�0 to be a chaotic semigroup in X, it suffices
that X0 , X� , and Xper be simultaneously dense in X.

Proof of Example 2.1. The spectrum of A is _(A)=[&:+;+ | |+|�1].
Indeed for any |+|<1, the vector

h+=[+n]n # N

satisfies the eigenvalue equation Ah=#h with eigenvalue #=&:+;+ and
the points with |+|=1 belong to the spectrum by the closure property.

We assume that 0� :
;<1.

(1) X0 is dense in X. Indeed, for 0�+< :
; , one has etAh+=

e&:t+;+t h+ � 0 as t � �. Hence h+ and any finite linear combination of
these vectors belongs to X0 . Since this set of vectors is dense in X, X0 is
also dense in X.

(2) X� is dense in X. Since etA is a C0 -group, for 1>+> :
; , one has

e&tA h+=e:t&;+th+ � 0 as t � �. Any such h+ # X� , since for any =>0
one can choose t large enough such that for g+=e&tAh+ , &g+&<= and
&etA g+&h+&=0. The same argument shows that X� is dense in X.

(3) Xper is dense in X. Indeed, since ;>:, the spectrum of the
operator A, _(A), contains a nonempty segment of the imaginary axis.
On that segment, the complex numbers }=i m

n , (m, n) # Z2 form a dense
set. Each such } is an eigenvalue of A with the eigenvector
h(}+:)�;=( }+:

; , ( }+:
; )2, ...). Each h(}+:)�; # Xper and linear combinations of
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such vectors are dense in l1. Indeed, if they were not dense, there would
exist a nonidentically zero functional 8=(,1 , ,2 , ...) # l� such that
(8, h(}+:)�;) =0 for any h(}+:)�; constructed as above. This would imply
that the analytic function represented by the series ,1

}+:
; +,2 ( }+:

; )2+
,3 ( }+:

; )3+ } } } is zero on a set of points } with an accumulation point,
which implies it is identically zero, in contradiction with the assumption
that 8{0. K

Lemma 2.3. If in the above example :=;, then the generating
C0 -semigroup etA is not chaotic.

Proof. For :=;, &:I+;B has no purely imaginary eigenvalues and
the uniform boundedness

&T(t)&=&e:t(B&1)&=e&:t &et:B&�e&:te&t:B&=1

contradicts the hypercyclicity of the semigroup, since it is now clear that
the orbit of any vector will be contained in the unit ball of X. Thus T(t)
cannot be chaotic. K

Example 2.4 [D-S-W, Example 4.12]. The linear evolution problem is
a convection-diffusion type equation of the form:

ft=afxx+bfx+cf :=Af,

{f (0, t)=0 for t�0,

f (x, 0)= f0 (x) for x�0,

with some f0 # L1 (R+, C). In [D-S-W], this problem is considered in the
Hilbert space L2 (R+ , C) but the same proof is valid in the Banach space
L1 (R+, C). So the operator A, with domain [ f # W 2, 1 ([0, �)) | f (0)=0],
generates an analytic chaotic semigroup T(t)=etA in L1 (R+, C), provided
that a, b, c>0 and c<b2�(2a)<1.

If in the above example we replace df�dx by its finite difference
approximation [$f ]j=( fj& fj&1)�hn and d 2f�dx2 by

[$2f ] j=
f j+1&2 f j+ fj&1

h2
n

,

then the generator A of Example 2.4 becomes

[Af ] j=a
f j+1&2 f j+ fj&1

h2
n

+b
fj& f j&1

hn
+cfj .
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By taking hn=a�b one gets [Af ] j=(&(b2�a)+c) fj+(b2�a) fj+1 and this
is the generator of Example 2.1, namely Af :=&:I+;B with :=(b2�a)&c
and ;=b2�a. Since c<b2�2a, this implies 0<:<;, which is a sufficient
condition for etA in Example 2.1 to be chaotic. By disregarding the fact that
the underlying spaces are different in these examples, the condition hn=a�b
answers the question (Q2). In Section 4 we construct the precise spaces to
answer this question.

3. APPROXIMATION IN THE SENSE OF KATO

Definition 3.1. We say that a sequence of Banach spaces [(Xn , & }&n):
n=1, 2, ...] converges to a Banach space (X, & }&) in the sense of Kato and
we write

Xn w�K X

if for any n there is a linear operator Pn # L(X, Xn) (called an approximat-
ing operator satisfying the following two conditions:

(K1) limn � � &Pn f &n=& f & for any f # X;

(K2) for any fn # Xn , there exists f (n) # X such that fn=Pn f (n) with
& f (n)&�C & fn&n (C is independent of n).

Definition 3.2. Let Xn w�K X, Bn # L(Xn), and B # L(X). We say that
Bn converges to B in the sense of Kato and we write Bn w�K B if
limn � � &BnPn f &Pn Bf &n=0 for any f # X. Let An and A be the gener-
ators of the C0 -semigroups [Tn (t)]t�0 �L(Xn) and [T(t)]t�0 �L(X),
respectively. Consider the following three conditions:

(A) (Consistency) There is a complex number * contained in the
resolvent sets �n # N \(An) and \(A), respectively, such that

(*&An)&1 w�K (*&A)&1.

(B) (Stability) There exists a positive constant M and a real number
| such that

&Tn (t)&�Me|t, for any t�0 and for any n # N.

(C) (Convergence) For any finite T>0

Tn (t) w�K T(t)
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uniformly on [0, T], i.e.

lim
n � �

sup
t # [0, T]

&Tn (t) Pn f &PnT(t) f &n=0 for any f # X. (3.1)

In [Ush] one can retrieve the standard version of the Lax equivalence
theorem which says that the conditions (A) and (B) hold if and only if (C)
holds.

The following theorem gives a negative answer to question (Q1).

Theorem 3.3. There exists a sequence of chaotic semigroups which
converges in the sense of Kato to a nonchaotic semigroup.

Proof. By using the semigroup of Example 2.1, one can construct such
a sequence. Let X :=l1 and A :=&:I+;B. From Lemma 2.3 the C0 -semi-
group T(t)=etA is chaotic for ;>:>0 and nonchaotic for ;=:>0.
Hence, if [;n] is a sequence such that ;n>: and ;n � :, then the sequence
of chaotic semigroups [Tn (t)]t�0 converges uniformly to the semigroup
[T(t)]t�0 . By taking Xn :=X and Pn :=I the identity operator, the
sequence [Tn (t)]t�0 converges also in the sense of Kato to [T(t)]t�0 ,
which is not chaotic. K

Theorem 3.4. Let [(Xn , & }&n) | n=1, 2, ...] be a sequence of Banach
spaces such that Xn w�K X. Suppose [T(t)]t�0 is a chaotic semigroup on
(X, & }&) and on each (Xn , & }&n) one defines a C0 -semigroup [Tn (t)]t�0 .
Now, if for some n # N one has

PnT(t) f=Tn (t) Pn f for any f # X and for any t�0, (3.2)

then [Tn (t)]t�0 is also chaotic.

Proof. From the hypercyclicity of [T(t)]t�0 it follows that there exists
an f * # X such that [T(t) f * | t�0] is dense in X. To prove (H) for
[Tn (t)]t�0 , take gn # Xn ; from (K2) there exists g(n) # X such that gn=
Pn g(n). Then for any =>0 there exists t>0 such that &g(n)&T(t) f *&<=.
The assumption (K1) implies the uniform boundedness of [Pn]; hence for
f n* :=Pn f * we have

&gn&Tn (t) f n*&n =&gn&Tn (t) Pn f *&n=&Pn (g(n)&T(t) f *)&n

�M &g(n)&T(t) f *&�M=.
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To prove (P) for Tn , take gn # Xn and denote g(n) # X such that
gn=Pn g(n). For =>0 we take f ( p) # Xper such that &g(n)& f ( p)&<=, then for
f ( p)

n =Pn f ( p) we have

&gn& f ( p)
n &n=&Pn (g(n)& f ( p))&n�M=.

To finish the proof it suffices to see that f ( p)
n is a periodic vector for Tn .

Indeed,

Tn (t) f ( p)
n =Tn (t) Pn f ( p)=PnT(t) f ( p)=Pn f ( p)= f ( p)

n . K

To prove the converse we have to impose extra conditions on Pn . Let us
denote by (Xn) per the set of all periodic vectors of Tn in Xn and for any
constant C>0 let us define

C( fn) :=[ f (n) # X | Pn f (n)= fn with & f (n)&�C & fn&n].

Theorem 3.5. Suppose that (3.2) holds for some n # N. Suppose
[Tn (t)]t�0 is chaotic and Pn satisfies (Xn)per �Pn (Xper). If there exists a
constant C such that for every f # X and =>0 there is an f (n) # C(Pn f ) with
& f& f (n)&<=, then [T(t)]t�0 is also chaotic.

Proof. Let us prove that condition (H) holds for [T(t)]t�0 . Since
[Tn (t)]t�0 is hypercyclic, there exists f n* # Xn such that the orbit
[Tn (t) f n* | t�0] is dense in Xn . Let g # X and gn=Pn g. For any =>0
there exists t>0 such that &gn&Tn (t) f n*&n<=. According to (K2), let
f
*
(n) # X be such that f n*=Pn f

*
(n). Then for h= g&T(t) f

*
(n) there exists

h(n) # C(Pnh), with &h&h(n)&<= and Pnh(n)=Pn h= gn&PnT(t) f
*
(n). As a

consequence of (3.2), we obtain that gn&Pn T(t) f
*
(n)= gn&Tn (t)& f n*.

Thus the inequality

&g&T(t) f
*
(n)&�&h&h(n)&+&h (n)&

�=+C &gn&Tn (t) f n*&n

�(1+C) = (3.3)

implies the hypercyclicity of T(t). To prove (P) for T(t), take g # X and
gn=Pn g. For =>0 we choose f ( p)

n # (Xn)per such that &gn& f ( p)
n &n<=. The

bijectivity of Pn on Xper implies that we may choose f ( p) # Xper such that
f ( p)

n =Pn f ( p). By taking h= g& f ( p) and h(n) # C(Pnh), an inequality similar
to (3.3) implies the theorem. K
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4. CHAOTICITY OF THE DISCRETE PARABOLIC EQUATION

In this section we construct approximating operators for X :=
L1 ([0, �)) in the sense of Kato. To this end, we define for each n # N the
step size hn such that hn � 0 as n � �. The corresponding space would be
the space of step functions generated by the characteristic functions
/n

j :=/[( j&1) hn , jhn) of the intervals [( j&1) hn , jhn). That is, any function
fn # Xn can be expressed by

fn= :
�

j=1

an
j /n

j . (4.1)

Each Xn is endowed with the norm induced by X. Hence, if fn # Xn is given
by (4.1), then & fn & :=hn ��

j=1 |an
j |. Now we define Pn as a map from X

into Xn by

fn=Pn f = :
�

j=1

f ( jhn) /n
j .

Riemann's sum theorem implies that

lim
n � �

&Pn f &n= lim
hn � 0

hn :
�

j=1

| f ( jhn)|=& f &.

Hence we have (K1); for (K2) it suffices to remark that the injection of Xn

into X is isometric. It follows that the operator Pn is an approximating
operator for X.

Now let us consider f # X, fn :=Pn f and define the operator An by

An fn :=; :
�

j=1

f (( j+1) hn) /n
j &: :

�

j=1

f ( jhn) /n
j ,

with D(An)=Xn .

Lemma 4.1. For ;>:�0 the operator An generates a chaotic semi-
group, etAn, on Xn .

Proof. One can repeat the proof of Example 2.1, by taking h+=
��

j=1 + j/n
j as the eigenfunction of An .

Here we want to define an operator A such that

PnAf =AnPn f for any f # D(A). (4.2)
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Actually the operator A is not exactly aD2+bD+cI of Example 2.4, but a
discrete version thereof, namely

Ah :=a \\1
h

/h�2+ V D+
2

+b \1
h

/h V D++cI, (4.3)

where /h and /h�2 are the characteristic functions of [0, h) and [&h
2 , h

2).

Lemma 4.2. For h=hn=a�b, :=((b2�a)&c), and ;=b2�a we have

PnAh f =AnPn f. (4.4)

Proof. We can write

_1
h

/h V D& f (x)=
1
h |

h

0
f $(x& y) dy=_ f (x)& f (x&h)

h & (4.5)

and for h=hn

Pn _1
h

/h V D& f (x)=
1
h

:
�

j=1

[ f ( jh)& f (( j&1) h)] /n
j (x).

In the same manner

_1
h

/h
2

V D&
2

f (x)=
f (x+h)&2 f (x)+ f (x&h)

h2 (4.6)

and

Pn _\1
h

/h�2 V D+
2

& f (x)

=
1
h2 :

�

j=1

[ f (( j+1) h)&2 f ( jh)+ f (( j&1) h)] /n
j (x).

Thus, if Ah :=a(( 1
h /h�2) V D)2+b( 1

h /h V D)+cI, we obtain (4.4) provided
that h=a�b, :=((b2�a)&c) and ;=b2�a. K

Lemma 4.3. Suppose that etA and etAn are the C0 -semigroups generated
by A and An , which are related by relation (4.2). Then

PnetAf =etAnPn f for any f # X. (4.7)
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Proof. It is sufficient to differentiate, at least for f # D(A):

d
dt

[PnetAf ]=Pn
d
dt

[etAf ]=PnAetAf =An[Pn etAf ],

for all t�0, and identify

[PnetAf ]| t=0=Pn f,

so that [PnetAf ] and etAnPn f are both the mild solutions of the Cauchy
problem

{
d
dt

u=Anu;

u(0)=Pn f.

Since D(A) is dense, (4.7) is true for all f # X. K

From (4.5) and (4.6) it follows that Ah is a bounded operator on
L1 ([0, �)). Consequently it generates a uniformly continuous semigroup
etAh. Furthermore, if f is a step function, then Ah f is also a step function;
hence the subspace Xn is invariant under Ah and etAh. Then we can prove:

Theorem 4.4. For h=a�b, etAh is a chaotic semigroup on L1 ([0, �)).

Proof. For the proof we will use Theorem 3.5. Lemma 4.3 implies (3.2)
and Lemma 4.1 asserts that etAn is chaotic. To see that Pn is a bijective
mapping between Xper and (Xn)per , one takes f # Xper and writes
etAnPn f =PnetAhf =Pn f. Thus, Pn f # (Xn)per . Conversely, if fn # (Xn)per by
considering fn as an element of X (since Xn is a subset of X) we have

PnetAhfn=etAnPn fn=etAnfn= fn ,

since Pn acts as the identity on Xn . On the other hand, fn # Xn implies
etAhfn # Xn ; thus PnetAhfn=etAhfn and consequently etAhfn= fn .

Finally, for given f # X, any function g # L1 ([0, �)) which satisfies
| g|�|Pn f | and interpolates f on the points [( jh, f ( jh)), j=1, 2, ...]
belongs to C(Pn f ) with C=1. Thus for any =>0 we can find an inter-
polating function f (n) with the additional condition & f (n)& f &<=. This
concludes the theorem. K
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